Simulations of graphitic nanoparticles at air-water interfaces.
نویسندگان
چکیده
The free energy associated with transferring a set of fullerene particles through a finite water layer is calculated using explicit solvent molecular dynamic simulations. Each fullerene particle is a carbon network of one or more spheroidal shells of graphitic carbon, and include single-shell (single-wall) or nested multi-shelled (nano-onions) structures ranging from 6 to 28 Å in radius. Corresponding changes in energy suggest a stronger affinity of carbon nano-onions for water compared to their single-shelled analogues. In the case of multi-shelled structures, the free energy profiles display a global minimum only in the bulk liquid indicating a high affinity of multi-shelled fullerene for complete hydration. Single-wall particles however, display a minimum at the air-water interface and for particles larger than 2 nm this minimum is a global minimum possessing a lower energy compared to the particle's state of complete hydration. While the propensity for single-shell particles to adsorb to the air-interface may increase with increasing particle size, there is an indication based on line tension calculations that larger single-shell particles may actually exhibit enhanced wetting compared to their smaller analogues.
منابع مشابه
Influences of surfactant and nanoparticle assembly on effective interfacial tensions.
We have studied assembly at air-water and liquid-liquid interfaces with an emphasis on systems containing both surfactants and nanoparticles. Anionic surfactants, sodium dodecyl sulfate (SDS) and non-ionic surfactants, Triton X-100 and tetraethylene glycol alkyl ethers (C(8)E(4), C(12)E(4) and C(14)E(4)), effectively decrease the surface tension of air-water interfaces. The inclusion of negativ...
متن کاملSelf-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles.
A natural self-regeneration step for urea derived graphitic carbon nitride with platinum nanoparticles is found by simply opening the system to air in the dark under ambient conditions, following its solar-driven hydrogen production. The produced peroxides deactivate the graphitic carbon nitride. Release of weakly bound peroxides on the polymeric semiconductor surface is a crucial process for r...
متن کاملIn situ assessment of the contact angles of nanoparticles adsorbed at fluid interfaces by multiple angle of incidence ellipsometry.
Here multiple angle of incidence ellipsometry was successfully applied to in situ assess the contact angle and surface coverage of gold nanoparticles as small as 18 nm, coated with stimuli-responsive polymers, at water-oil and water-air interfaces in the presence of NaCl and NaOH, respectively. The interfacial adsorption of the nanoparticles was found to be very slow and took days to reach a fa...
متن کاملEffect of Surface Tension from MD Simulations on Size-Dependent Deliquescence of NaCl Nanoparticles
The deliquescence of sodium chloride is size dependent for particles smaller than 100 nm, with some discrepancies between measured and predicted deliquescence relative humidity as a function of size. Two sources of uncertainty in current models are the solid– liquid/solid–vapor surface tensions and the curvature dependence of surface tension. Molecular Dynamics simulations are used to calculate...
متن کاملEllipsoidal Janus nanoparticles assembled at spherical oil/water interfaces.
The equilibrium behavior of ellipsoidal Janus nanoparticles adsorbed at spherical oil/water interfaces was investigated using dissipative particle dynamics simulations. Several phenomena were documented that were not observed on similar simulations for planar oil/water interfaces. The nanoparticles were found to yield isotropic, radial nematic phases, and axial nematic domains, depending on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 47 شماره
صفحات -
تاریخ انتشار 2016